

Diabetic Cardiomyopathy

Ariel COHEN, Paris,

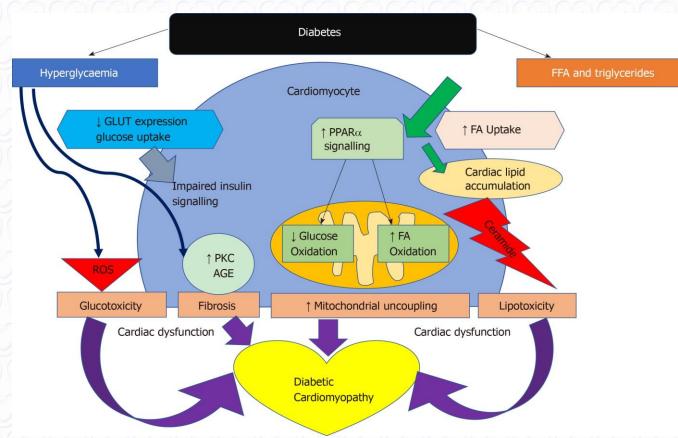
Webinar CNCH

17 septembre 2020

Disclosures

DISCLOSURE STATEMENT Ariel COHEN, MD, PhD, FESC, FACC

Research Grants from Bayer, CPAM, RESICARD


Consulting Fees from Amgen

Lecture Fees from Amgen, Bayer, BMS, Boehringer-Ingelheim, Daiichi Sankyo, Pfizer.

SORBONNE UNIVERSITÉ

Pathways of cardiac dysfunction leading to diabetic cardiomyopathy

AGE: Advanced glycation end products; FA: Fatty acids; FFA: Free fatty acids; GLUT: Glucose transporters; PKC: Protein kinase C; PPARα: Peroxisome proliferator- activated receptor alpha; ROS: Reactive oxygen specie

Athithan L. World J Diabetes 2019;10: 490-510

Diabetic cardiomyopathy

1- Epidemiology: diabetes in cardiovascular diseases

Epidemiology

LV function / HF	Technique / Event	percentage
Left ventricular dys	function	
Impaired LV diastolic function	DTI	40%
Impaired LV systolic function	DTI and 2D speckle tracking echocardiography (asymptomatic patient)	43%
Heart failure and d	iabetes	
	Framingham Study, men/women with diabetes	M: 2.4-fold W: 5-fold
	Diabetes in HF	24–40% (30% in HFPEF)
	Prevalence of HF in diabetes if age > 65 years	22%

Epidemiology: morbi-mortality

LV function / HF	Technique / Event	percentag e
Heart failure a	nd diabetes	
	3-year mortality in heart failure with diabetes	40% ¹
	Risk of requiring admission to hospital due to HF Patients with diabetes (vs no diabetes).	30% greater risk
	3-year cardiovascular mortality in diabetes admitted to hospital with HF	23–30%

Prospective randomized treatment trials in patients with type 2 diabetes reporting heart failure as a cardiovascular outcome

Trials comparing intensity of glucose lowering

	UKPDS (n=3 867)	ADVANCE (n=11 140)	ACCORD (n=10 251)	VADT (n=1 791)
Median/mean duration of diabetes (y)	-	8	10	11-5
Median/mean FU (years)	10	5	3,5	5,6
Outcomes				
CV deaths, n (%)	-	542 (5%)	229 (2%)	67 (4%)
All MI, n (%)	573 (15%)	679 (6%)	-	142 (8%)
All stroke, n (%)	203 (5%)	484 (4%)	-	64 (4%)
All HF, n (%)	116 (3%)	-	276 (3%)	158 (9%)

McMurray JJV. Lancet Diabetes Endocrinol 2014; 2:843–51

Cardiovascular events in diabetic subgroups of patients in clinical trials of patients with chronic arterial disease, hypertension, or acute MI

Diabetic subgroup from trials in patients with chronic arterial disease, HT, or both

	HOPE (MICRO- HOPE ;	EUROPA (PERSUADE	LIFE	VALUE	ACCOMPLISH
	n = 3577)	n= 1 502)	(n= 1 195)	(n=5 250)	(n=6 946)
Participants	Age ≥ 55y with CVD ; or ≥1 CV risk factor	Age > 18y ; CHD	Age 55-80y ; HT ; LVH	Age ≥ 50y ; HT; CVD or CV risk factors	Age ≥ 50y ; HT ; CVD or CV risk factors
Exclusion criteria	Nephropathy, HF or LVEF <40%	HF	HF or LVEF <40%	HF requiring an ACE inhibitors	HF or LVEF <40% requiring an ACE inhibitor
Median/mean FU (years)	4,5	4,3	4,7	4,2	2,5
Outcomes					
CV deaths, n (%)	284 (8%)	107 (7%)	99 (8%)	286 (5%)	136 (2%)
All MI, n (%)	414 (12%)	134 (9%)	91 (8%)	299 (6%)	168 (2%)
All stroke	184 (5%)	41 (3%)	116 (10%)	234 (4%)	134 (2%)
All HF	434 (12%)	39 (3%)	-	412 (8%)	141 (2%)

Diabetic cardiomyopathy

1- Epidemiology: diabetes in cardiovascular diseases

3- Diabetic cardiomyopathy Definition / Pathophysiology / diagnosis

THE LANCET]

ORIGINAL ARTICLES

[FEB. 20, 1954

DIABETIC ANGIOPATHY A SPECIFIC VASCULAR DISEASE

KNUD LUNDBÆK M.D. Copenhagen

PROFESSOR OF INTERNAL MEDICINE IN THE UNIVERSITY OF AARHUS, DENMARK

From the Second University Clinic of Internal Medicine, Kommunehospitalet, Aarhus be regarded as "complicating disease "—arteriosclerosis, atherosclerosis, medial sclerosis, diffuse arteriolar sclerosis, or any other more or less well-known and more or less well-defined vascular disease ?

Until recently the vascular diseases in diabetes mellitus were usually classified as arteriosclerosis, and the high incidence of these anomalies was usually dealt with only by stating that diabetes mellitus promotes the

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY © 2017 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER VOL. 70, NO. 14, 2017 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/j.jacc.2017.07.792

2

Clinical Implications of Echocardiographic Phenotypes of Patients With Diabetes Mellitus

Laura Ernande, MD, PHD,^{a,b} Etienne Audureau, MD, PHD,^c Christine L. Jellis, MD, PHD,^d Cyrille Bergerot, MD,^e Corneliu Henegar, MD, PHD,^b Daigo Sawaki, MD, PHD,^b Gabor Czibik, MD, PHD,^b Chiara Volpi, MD,^a Florence Canoui-Poitrine, MD, PHD,^c Hélène Thibault, MD, PHD,^{fg} Julien Ternacle, MD,^{a,b} Philippe Moulin, MD, PHD,^{g,h} Thomas H. Marwick, MBBS, PHD, MPH,^f Geneviève Derumeaux, MD, PHD^{a,b}

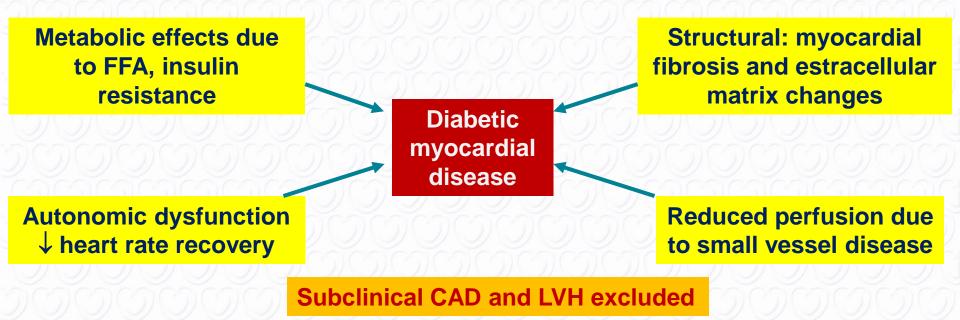
Available online at SciVerse ScienceDirect www.sciencedirect.com Elsevier Masson France EM consulte www.em-consulte.com/en

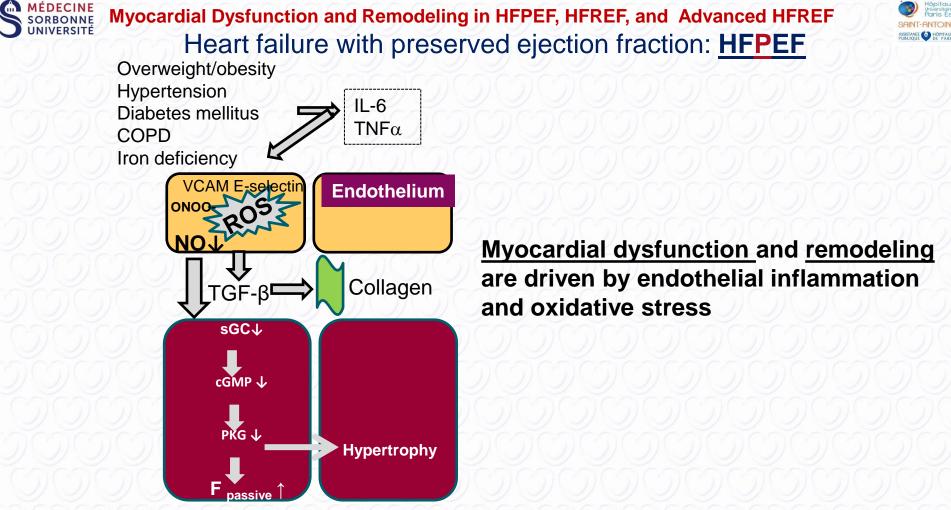
REVIEW

Diabetic cardiomyopathy: Myth or reality?

Cardiomyopathie diabétique : mythe ou réalité?

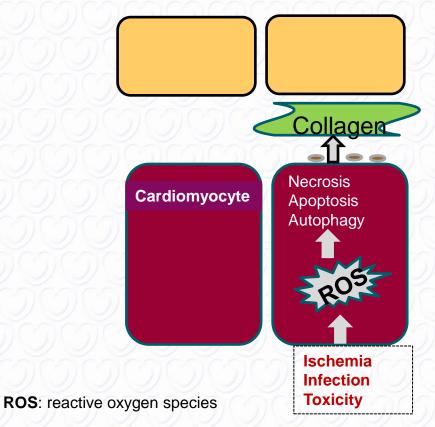
Laura Ernande^{a,*,b}, Geneviève Derumeaux^{a,b}




Diabetic cardiomyopathy

Definition and pathophysiology

Diabetic heart disease (*«Diabetic myocardial disease »*) is defined as myocardial disease in patients with diabetes that cannot be ascribed to hypertension, coronary artery disease, or other known cardiac disease.


PKG: protein kinase G activity

Paulus W. J Am Coll Cardiol 2013;62:263–71

Médecine Sorbonne UNIVERSITE Myocardial Dysfunction and Remodeling in HFPEF, HFREF, and Advanced HFREF

Heart failure with reduced ejection fraction: HFREF

Oxidative stress originates in the cardiomyocytes because of <u>ischemia</u>, <u>infection</u>, <u>or toxic agents</u>.

ROS (reactive oxygen species) trigger cardiomyocyte autophagy, apoptosis, or necrosis.

Necrosis attracts leukocytes.

Dead cardiomyocytes are replaced by fibrous tissue.

Paulus W. J Am Coll Cardiol 2013;62:263-71

Diabetic cardiomyopathy

Diagnostic tools

ТооІ	Parameter
Clinical diagnosis	Asymptomatic patients with diabetes
ECG	Aspecific
2D-echocardiography	LVEF (3D > 2D >> M-mode), LV - RV - LA remodelling
Doppler echo	Diastolic dysfunction (E/e', IVRT, LA size)
Speckle imaging	Strain (longitudinal, radial)
MRI	LVMI, LVEF. LV - <u>RV</u> - LA remodelling
Biomarkers	BNP, NT-pro-BNP
Exercise capacity	\downarrow peak oxygen consumption (VO ₂) and VO ₂ at submaximal levels of exercise

Diabetic cardiomyopathy

 1- Epidemiology: diabetes in cardiovascular diseases
 3- Diabetic cardiomyopathy Definition / Pathophysiology / diagnosis Restrictive versus dilated phenotypes

Diabetic cardiomyopathy: a two-faced disease with restrictive and dilated phenotypes

Engene Harrybord (2003) 34. 178-1727 REVIEW Clinical update Clinical diabetic cardiomyopathy: a two-faced disease with restrictive and dilated phenotypes Petar M. Seferović ¹ and Walter J. Paulus ³⁴	DMCMP with <u>restrictive/HFPEF</u> <u>phenotype</u>	DMCMP with <u>dilated/HFREF</u> <u>phenotype</u>
Hyperglycaemia	+++	+
Lipotoxicity	+++	+
AGEs deposition	+++	+++
Microvascular rarefaction	+++	+++
Autoimmunity	-	+++
Insulin resistance/hyperinsulinaemia	+++	-

AGEs, advanced glycation end-products

Seferovic PM. Eur Heart J 2015; 36: 1718–27

Diabetic cardiomyopathy:

a two-faced disease with restrictive and dilated phenotypes

Diagnostic criteria for diabetic cardiomyopathy (DMCMP)

DMCMP restrictive / HFPEF phenotype

1- Presence of DM

2- Exclusion of CAD, valvular or congenital heart disease

- 3- Exclusion of hypertensive heart disease (=DBP < 90 mmHg)
- 4- Exclusion of infiltrative heart disease by endomyocardial biopsy
- 5- LVEF > 50% ; LVEDVI < 97mL/m²
- 6- E/E'> 15 or 8<E/E'<15+LAVI> 40 mL/m² or 8<E/E'<15+BNP > 200 pg/mL or 8<E/E'<15+AF or 8<E/E'<15+LVH (LVMI (women) >122g/m² ; LVMI (men) > 149 g/m²

DMCMP dilated / HFPEF phenotype

1- Presence of DM

2- Exclusion of CAD, valvular or congenital heart disease
3- Exclusion of hypertensive heart disease (=DBP < 90 mmHg)

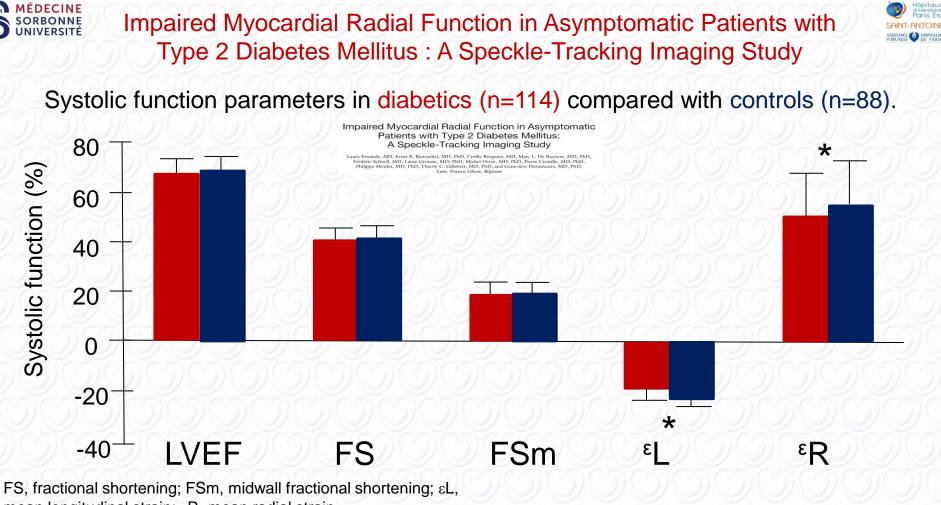
4- Exclusion of myocarditis by endomyocardial biopsy

5- LVEF <50% ; LVEDVI > 97mL/m²

Seferovic PM. Eur Heart J 2015; 36: 1718–27

Diastolic Dysfunction in Patients with Type 2 Diabetes Mellitus: Is It Really the First Marker of Diabetic Cardiomyopathy?

Diastolic Dysfunction in Patients with Type 2 Diabetes Mellitus: Is It Really the First Marker of Diabetic Cardiomyopathy?


Laura Errande, MD, Cyrille Bergerott, MD, Ernst R. Bictzschel, MD, PhD, Marc L. De Buyzere, PhD, Heifene Thisault, MD, PhD, Pierce Gautier PgnonBlanc, MD, Pierce Croille, MD, PhD, Michel Ovize, MD, PhD, Laure Groisne, MD, PhD, Jun, MD, PhD, Thierry C. Gillebert, MD, PhD, and Genevice Derumeaux, MD, PhD, Pan, *Panor, France, Gheni, Beljainn*

Prospective

114 patients with type 2 diabetes mellitus (DM) with controlled BP without overt heart disease were prospectively enrolled 88 age-matched controls

Diastolic dysfunction	Prevalence in DM
Overall	47%
Grade I diastolic dysfunction	33%
Grade II diastolic dysfunction	14%
Systolic dysfunction	
Global longitudinal strain ≥ -18%).	32%

Ernande L. J Am Soc Echocardiogr 2011;24:1268-75

mean longitudinal strain; εR, mean radial strain.

*P < .05 between diabetics and controls

Ernande L. J Am Soc Echocardiogr 2010;23:1266-72

Strain Imaging and Diabetic cardiomyopathy

Hôpitaux Universitairea Paris Est SAINT-ANTOINE ASSISTANCE O HOPITAUX JUBLIQUE O HOPITAUX

Studies on left ventricular function and myocardial strain in diabetes

Publication and imaging modality	Group and baseline characteristics	Exclusion criteria	Main findings		
Ernande <i>et al</i> 2010	T2DM: <i>n</i> = 119, 69 males	LVEF < 56%, age < 35 or > 65, signs, symptoms or	↓ GLS (-19.3% ± 3% <i>v</i> s -22% ± 2%) and GRS (50% ± 16% <i>v</i> s 56% ± 12%, ⁿ <i>P</i> <		
Echocardiography	Controls: <i>n</i> = 39, 30 males	history of heart disease, no RWMA, valve disease, renal disease, T1DM, poor DM control (HbA1C > 12%)	no RWMA, valve disease, renal disease, T1DM, poor DM control (HbA1C $= 3.9$, $P < 0.001$) and gender ($t = 3.4$		
Ng <i>et al</i> , 2012	<i>n</i> = 69 DMs (<i>n</i> = 50, 35 T1DM) Mean	Age < 18 yr, arrhythmia, CAD, MI, RWMA,	↓ GLS DM vs controls (-16.1% ± 1.4% vs 20.2% ± 1.0% ^p P < 0.001)		
MRI	age 51 ± 10 yr, 54% males. BMI 26.3 ± 3.7 Controls ($n = 19$), matched for age (45 ± 15), sex (63.2% males) an BMI 26.1 ± 4.4		↓ GLS DM T2DM vs T1DM (-15.3% ± 1.2% vs 16.4% ± 1.4%, ^q P = 0.009)		

CTCA: Computed topography coronary angiogram; GLS: Global longitudinal strain; GRS: Global radial strain; PEDSR: Peak early diastolic strain rate; PSSR: Peak systolic strain rate; RWMA: Regional wall motion abnormality.

Athithan L. World J Diabetes 2019;10: 490-510

Diabetic cardiomyopathy

1- Epidemiology: diabetes in cardiovascular diseases

3- Diabetic cardiomyopathy Definition / Pathophysiology Restrictive versus dilated phenotypes Prognostic significance

Myocardial dysfunction in the Community

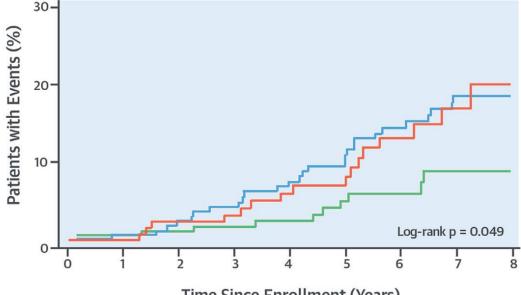
2042 randomly selected residents of Olmsted County, Minnesota, ≥ 45 years F.U.: 7000 person-years

		Diastolic dysfunction				
	Normal	Mild	Moderate	Severe		
Diabetes						
No	1211 (73.3)	329 (19.5)	108 (6.5)	11 (0.7)	.001	
Yes	66 (52.4)	48 (38.1)	10 (7.9)	2 (1.6)		
		Systolic dy	/sfunction			
		$LVEF \le 50\%$		LVEF >	> 50%	
Diabetes	N at risk	N affected	р	N affected	р	
No	1885	102 (5.4)	.001	34 (1.8)	.07	
Yes	151	21 (13.9)		6 (4.0)		

Redfield M. JAMA 2003 ; 289 : 194-202

SORBONNE UNIVERSITÉ Clinical Implications of Echocardiographic Phenotypes of Patients With Diabetes Mellitus

Cardiac Phenotypes and prognosis


Cluster 1 (low comorbidity)

lowest LVMi lowest E/e' ratio, highest LVEF and strain values. predominantly male patients, lowest rate of obesity or HTN.

Cluster 2 (elderly, diastolic dysfunction)

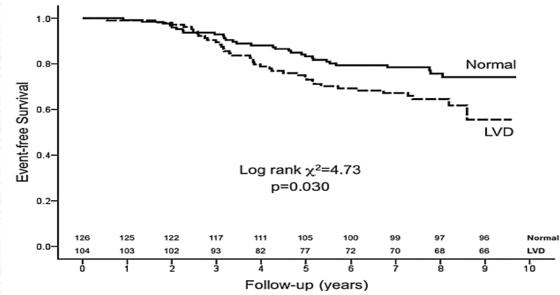
highest strain values lowest e' velocities and? highest E/e' ratio. Oldest patients, predominantly female lowest rate of isolated T2DM. Blood pressure, BMI, and HR the highest

<u>Cluster 3 (hypertrophic systolic dysfunction)</u> highest LVMi and LV volumes Lowest LVEF and strain. Predominantly males, similar age and rate of obesity and HTN as cluster 1

Time Since Enrollment (Years)

Enande L. J Am Coll Cardiol 2017;70:1704–16

Subclinical LV dysfunction (LVD) in type 2 diabetes and the risk of adverse outcome.



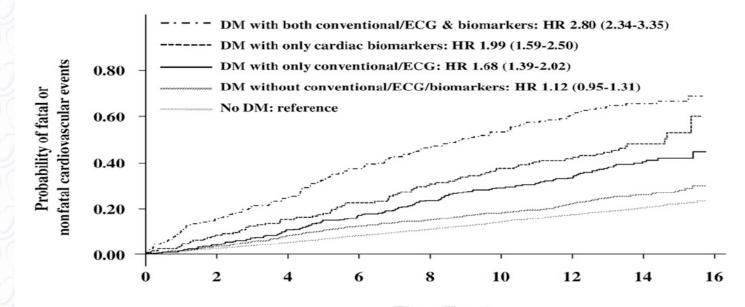
Subclinical LV dysfunction and 10-year outcomes in type 2 diabetes mellitus

David J Holland,^{1,2,3} Thomas H Marwick,⁴ Brian A Haluska,¹ Rodel Leano,¹ Matthew D Hordern,³ James L Hare,^{5,6} Zhi You Fang,¹ Johannes B Prins,^{1,7} Tony Stanton¹

Primary outcome: all-cause mortality and hospitalisation

Prospective cohort study, 230 asymptomatic patients with type 2 DM, LVEF ≥50%), Measurement of **global longitudinal 2D strain (GLS)** No evidence of coronary artery disease at recruitment. F.U.: up to 10 years.

Holland DJ. Heart. 2015;101: 1061-6



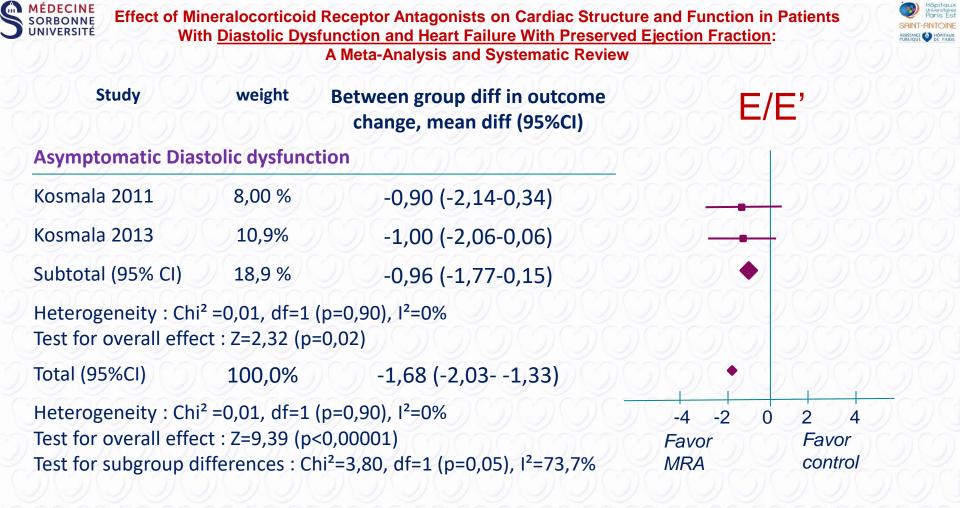
Natriuretic Peptide and High- Sensitivity Troponin for Cardiovascular Risk Prediction in Diabetes: The ARIC Study

Kaplan-Meier curves for probability of fatal and nonfatal cardiovascular events.

8,402 participants without prevalent CVD
1,510 subjects with diabetes (mean age 63 years, 52% women, 60% hypertensive).
Median F.U.: 13.1 years, 540 incident fatal/nonfatal CVD events (CHD, heart failure, and stroke)

HRs adjusted for demographic characteristics and cardiovascular risk factors.

Gori M. Diabetes Care. 2016;39:677-85.



Diabetic cardiomyopathy

 1- Epidemiology: diabetes in cardiovascular diseases
 3- Diabetic cardiomyopathy Definition / Pathophysiology Restrictive versus dilated phenotypes Prognostic significance

4- Treatment principles in LVD / heart failure

Pandey A. J Am Heart Assoc.2015;4:e002137 doi: 10.1161/JAHA.115.002137

Meta-analyses of <u>Heart Failure with Preserved Ejection</u>

Fraction treatments in diabetic patients

	ACEi ¹	Betablockers ²	ARB ³
All-cause Mortality	NS	RR: 0.91; 95% CI: 0.87 - 0.95; P < 0.001	-
Hospitalization for HF	RR 0.89; 95 % CI 0.82– 0.97; p = 0.01	RR, 1.01; 95% CI, 0.66 to 1.53; P=0.97	RR, 0.83; 95% CI, 0.70 to 0.98; p = 0.01

¹Effects of renin-angiotensin-aldosterone system inhibitors on mortality, hospitalization, and diastolic function in patients with HFpEF. A meta-analysis of 13 randomized controlled trials
 ²Effects of beta-blockers on heart failure with preserved ejection fraction: a meta-analysis.
 ³Effects of mineralocorticoid receptor antagonists in patients with preserved ejection fraction: a meta-analysis of randomized clinical trials.

¹ Zhang Q. Herz 2016;41:76–86 ²Liu F. PLoS One. 2014;9: e90555 ³Chen Y. BMC Med. 2015 ;13:10. SORBONNE UNIVERSITÉ Comparison of the event rates for different SHIFT (Systolic Heart failure treatment with the *I*_f inhibitor ivabradine Trial) endpoints between non-diabetic HF patients and all diabetic HF patients, diabetic HF patients on insulin, or diabetic HF patients not on insulin

Endpoint	Adjusted HR (95% CI), p (<i>vs</i> non-diabetic)					
			History of diabetes	5		
	History of diabetes	On insulin Not on insulin On insulin vs not on insulin				
Primary endpoint ¹	1,18 (1,07-1,31)	1,43 (1,24-1,66)	1,07 (0,95-1,21)	1,33 (1,13-1,58)		
	0,001	<0,001	0,23	0,001		
<u>CV mortality</u>	1,05 (0,91-1,20)	1,11 (0,89-1,37)	1,02 (0,87-1,20)	1,09 (0,85-1,38)		
	0,53	0,35	0,83	0,497		
HF mortality	1,15 (0,88-1,49)	1,85 (1,32-2,59)	0,83 (0,59-1,16)	2,23 (1,46-3,40)		
	0,31	<0,001	0,28	<0,001		
All cause	1,10 (0,96-1,25)	1,24 (1,02-1,50)	1,03 (0,89-1,20)	1,20 (0,96-1,50)		
mortality	0,17	0,031	0,68	0,108		
Hospitalization	1,28 (1,13-1,44)	1,73 (1,47-2,05)	1,08 (0,93-1,25)	1,61 (1,33-1,95)		
for worsening HF	<0,001	< 0,001	0,31	0,001		

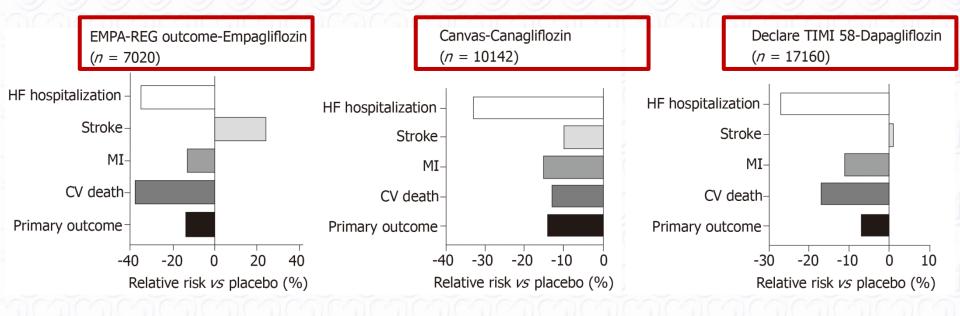
¹cardiovascular death or hospitalisation for worsening HF

Komajda M. Eur J Heart Failure 2015; 17: 1294–1301

PARADIGM

Risk Related to Pre-Diabetes Mellitus and Diabetes Mellitus in Heart Failure With Reduced EF Insights From Prospective Comparison of ARNI With ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure Trial

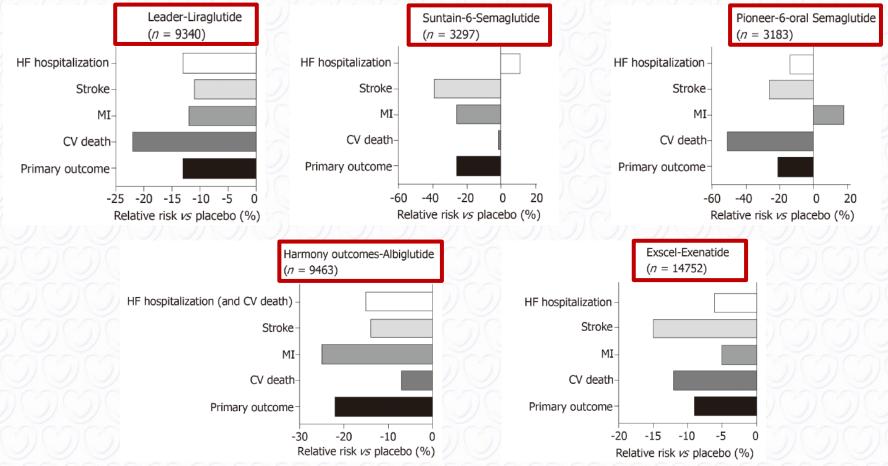
Relationship between ejection fraction (EF) and the primary outcome stratified by history of diabetes mellitus (DM) and glycemic status.


LVEF vs	<15%	15-20%	20-25%	25-30%	30-35%	>35%
DM status	HR (95% CI)					
Normo-	1,79	1,86	1,45	1,43	1,19	1,00 (ref)
glycemia	(0,95-3,35)	(1,22-2,86)	(0,98-2,15)	(0,99-2,05)	(0,83-1,72)	
Prediabetes	2,78	2,12	2,11	1,77	1,44	1,37
	(1,63-4,73)	(1,39-3,24)	(1,44-3,08)	(1,23-2,54)	(1,01-2,06)	(0,92-2,05)
Undiagnosed diabetes	4,01	3,17	2,44	1,93	1,71	1,38
	(2,29-7,01)	(2,00-5,00)	(1,63-3,67)	(1,30-2,86)	(1,17-2,50)	(0,85-2,24)
Diabetes	3,37	2,59	2,66	2,49	2,11	1,67
	(2,11-5,39)	(1,77-3,79)	(1,87-3,80)	(1,77-3,50)	(1,51-2,96)	(1,15-2,44)

Kristensen SL. Circ Heart Fail. 2016;9:e002560

Major cardiovascular outcome trials examining SGLT2 inhibitors.

Athithan L. World J Diabetes 2019;10: 490-510


Major cardiovascular outcome trials using GLP1 receptor antagonists

MÉDECINE

ORBONNE

UNIVERSITÉ

Athithan L. World J Diabetes 2019;10: 490-510

Diabetic cardiomyopathy:

a two-faced disease with restrictive and dilated phenotypes

	DMCMP with restrictive/HFPEF phenotype	DMCMP with dilated/HFREF phenotype						
Diagnosis								
Charter designments and the second se	DM (mainly T2DM, obese) Dyspnoea and signs of congestion, S4 Gallop No coronary, valvular, or congenital cardiac disease No arterial hypertension No infiltrative heart disease in endomyocardial biopsy $LVEF \ge 50\%$; $LVEDVI \le 97 \text{ mL/m}^2$ Diastolic LV dysfunction	DM (mainly longstanding T1DM) Dysphoea and signs of congestion, S3 Gallop No coronary, valvular, or congenital cardiac disease No arterial hypertension No inflammation or virus in endomyocardial biopsy LVEF < 50% ; LVEDVI > 97 mL/m ² Diastolic LV dysfunction						
Treatment	Treatment							
	Diuretics MRA? <i>Ongoing iSGLT2- studies</i>	ACEIs, ARBs, β-blockers, ARNIs, mineralocorticoid-receptor antagonists, ivabradine, <i>iSGLT2-liraglutide?</i> Resynchronization						

After and modified from Seferovic PM. Eur Heart J 2015; 36: 1718–27

Effect of Dapagliflozin on Heart Failure and Mortality in Type 2 Diabetes Mellitus

Kato ET. Circulation. 2019;139:2528-2536

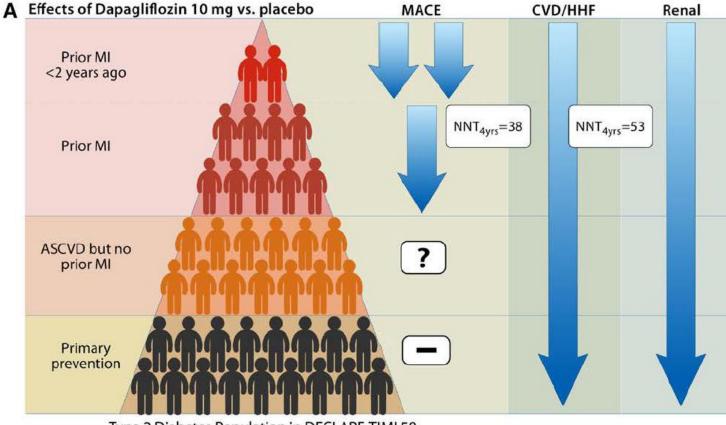
Effect of Dapagliflozin on Heart Failure and Mortality in Type 2 Diabetes Mellitus

Cardiovascular outcomes by heart failure (HF) category

	Dap	a gliflozi KM Rate (%		Iacebo KM Rate (%)	ARR (%)	HR (95% CI)	P interactio
Cardiovascular death / Hospitalization for heart failure							
HFrEF	59	17.9	95	27.1	9.2	0.62 (0.45-0.86	6) 0.046
Not HFrEF	358	4.3	401	4.8	0.5	0.88 (0.76-1.0)	2)
HFpEF ———————————————————————————————————	92	6.8	99	7.9	1.1	0.88 (0.66-1.1	7)
No Hx of HF>-	- 266	3.4	302	3.9	0.5	0.88 (0.74-1.03	3)
Hospitalization for heart failure							
HFrEF	41	13.5	63	19	5.5	0.64 (0.43-0.9	5) 0.449
Not HFrEF	171	2.1	223	2.7	0.6	0.76 (0.62-0.92	2)
HFpEF ———————————————————————————————————	- 51	4.5	67	5.2	0.7	0.72 (0.50-1.04	4)
No Hx of HF	120	1.5	156	2.0	0.5	0.77 (0.60-0.9)	7)
Cardiovascular death							
HFrEF	25	7.2	47	12.4	5.2	0.55 (0.34-0.9	0) 0.012
Not HFrFF	- 220	2.5	202	23	-0.2	1 08 (0 89-1 3	1)
HFpEF	54	3.1	38	3.2	0.1	1.41 (0.93 - 2.13	3)
No Hx of HF	- 166	2.1	164	2.1	0.0	1.01 (0.81-1.2	5)
All cause mortality							
HFrEF	38	11.3	68	17.7	6.4	0.59 (0.40-0.8	8) 0.016
Not HErEE	491	5.5	502	54	-0.1	0.97 (0.86-1.1)	0)
HFpEF	— 84	6.3	81	6.2	- 0.1	1.02 (0.75-1.3	8)
No Hx of HF 🔍 🗝	407	5.0	421	4.9	-0.1	0.96 (0.84-1.1	D)
			_				
0.1 Favors dapagliflozin	Favors plac	ebo	10				

Kato ET. Circulation. 2019;139:2528-2536

EDITORIAL


The Serendipitous Story of SGLT2 Inhibitors in Heart Failure

New Insights From DECLARE-TIMI 58

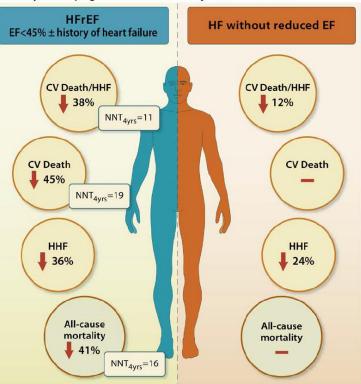
Verma S. Circulation. 2019;139:2537–2541

The Serendipitous Story of SGLT2 Inhibitors in Heart Failure New Insights From DECLARE-TIMI 58

Type 2 Diabetes Population in DECLARE-TIMI 58

Verma S. Circulation. 2019;139:2537–2541

Universitaires Paris Est SAINT-ANTOINE ASSISTANCE O HOPITAUX PUBLIQUE O HOPITAUX



The Serendipitous Story of SGLT2 Inhibitors in Heart Failure New Insights From DECLARE-TIMI 58

Efficacy of Dapagliflozin Based on Ejection Fraction

в

Verma S. Circulation. 2019;139:2537–2541

European Journal of Heart Failure (2020) doi:10.1002/ejhf.1954

Sodium-glucose co-transporter 2 inhibitors in heart failure: beyond glycaemic control. The position paper of the Heart Failure Association of the European Society of Cardiology

Petar M. Seferović^{1,2*†}, Gabriele Fragasso³, Mark Petrie⁴, Wilfried Mullens^{5,6}, Roberto Ferrari⁷, Thomas Thum⁸, Johann Bauersachs⁹, Stefan D. Anker^{10,11}, Robin Ray¹², Yuksel Çavuşoğlu¹³, Marija Polovina^{1,14}, Marco Metra¹⁵, Giuseppe Ambrosio¹⁶, Krishna Prasad¹⁷, Jelena Seferović^{1,18}, Pardeep S. Jhund¹⁹, Giuseppe Dattilo²⁰, Jelena Čelutkiene²¹, Massimo Piepoli²², Brenda Moura²³, Ovidiu Chioncel^{24,25}, Tuvia Ben Gal²⁶, Stefan Heymans²⁷, Rudolf A. de Boer²⁸, Tiny Jaarsma²⁹, Loreena Hill³⁰, Yuri Lopatin³¹, Alexander R. Lyon³², Piotr Ponikowski³³, Mitja Lainščak^{34,35}, Ewa Jankowska³³, Christian Mueller³⁶, Francesco Cosentino³⁷, Lars Lund³⁸, Gerasimos S. Filippatos³⁹, Frank Ruschitzka⁴⁰ Andrew J.S. Coats⁴¹, and Giuseppe M.C. Rosano^{42†}

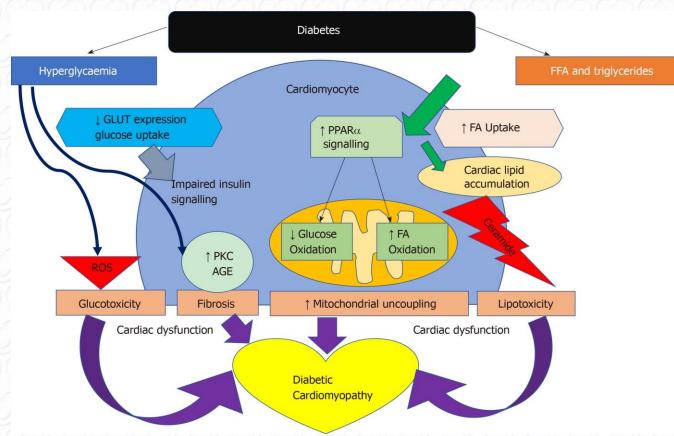
SGLT2 inhibitors in heart failure: beyond glycaemic control. The position paper of the Heart Failure Association of the European Society of Cardiology

HFPEF: Ongoing clinical trials with sodium–glucose co-transporter 2 inhibitors

		Primary outcome						
Cardiovascular outcomes in patients with HFpEF								
EMPEROR-Preserved (NCT03057951)	Empagliflozin in patients with HFpEF with/without T2DM	cardiovascular death or HF hospitalisation						
DELIVER (NCT03619213)	Dapagliflozin in patients with HFpEF with/without T2DM	composite of cardiovascular death, hospitalisation for HF or urgent HF visit						
Symptoms and functional status								
DETERMINE-Preserved (NCT03877224)	Dapagliflozin in patients with HFpEF with/without T2DM	change from baseline in KCCQ and 6-min walk distance at week16						

SGLT2 inhibitors in heart failure: beyond glycaemic control. The position paper of the Heart Failure Association of the European Society of Cardiology

HFPEF: Ongoing clinical trials with sodium–glucose co-transporter 2 inhibitors


Primary outcome

Cardiac physiology and metabolism							
EMPA-VISION (NCT03332212)	Empagliflozin in patients with HFrEF or HFpEF with/without T2DM	effect on cardiac physiology and metabolism as assessed by cardiac magnetic resonance spectroscopy					
EmDia (NCT02932436)	Empagliflozin in patients with T2DM	effect on left ventricular diastolic function as assessed by echocardiography					

SORBONNE UNIVERSITÉ

Pathways of cardiac dysfunction leading to diabetic cardiomyopathy

AGE: Advanced glycation end products; FA: Fatty acids; FFA: Free fatty acids; GLUT: Glucose transporters; PKC: Protein kinase C; PPARa: Peroxisome proliferator- activated receptor alpha; ROS: Reactive oxygen specie

Athithan L. World J Diabetes 2019;10: 490-510